Saturday, October 30, 2010

Clonal evolution model strikes back at cancer stem cell hierarchical model in the Head & Neck tumor

Heterogeneity in cancer with hypothesized models has been reviewed in terms of definition and markers 1, 2. This commentary deals with the two models of tumor progression in Head and Neck tumors: the stochastic clonal evolution model versus the cancer stem cell (CSC) hierarchical model. Cameron et al. addressed this controversial issue and reported that heterogeneity of head & neck squamous cell carcinoma (HNSCC) is experimentally explained by the stochastic clonal evolution model 3. The initiation of HNSCC in a xenotransplant model is most consistent with a stochastic clonal evolution model since all the single cells derived from HNSCC cell lines have tumor-initiating activity. In addition, clonal variants derived from tumor cells give rise to microenvironments that support tumor cells. The observations raise an old and new issue, i.e. cancer stem cell model versus clonal evolution model, in the HNSCC as well as other cancers.



Two models in solid tumor

CSC theory was proposed nearly half a century ago. The presence of CSCs was suggested around the same time as when hematopoietic stem cells were found. According to the CSC model, the tumor is viewed as an entity that can be studied applying the principles of stem cell biology. Stem cells have been identified in tissues such as bone marrow, brain, intestine, and skin, and tissue structure is generated by hierarchical stem cell systems. Similarly, a hierarchical organization consisting of a CSC at the top of the hierarchy exists in cancer tissues, similar to stem cell systems of normal tissues, and a small number of CSCs maintain cancer tissue by supplying tumor cells. In 1963 it was reported that only 1 to 4% of murine lymphoma cells formed colonies in the spleen, and 0.02 to 0.1% of solid tumor cells formed colonies 4. Very low populations of human leukemic cells generated acute myeloid leukemia in NOD/Scid mice 5. Marker analysis revealed that CD34-positive and CD38-negative fractions had leukemogenic capacity. These inspiring reports suggest that leukemic cells have a hierarchical system with CSCs at the top, like intact hematopoiesis. In contrast, the stochastic clonal evolution model is that all cells of the tumor have equal ability to propagate the tumor. Most tumors are largely composed of cells with some degree of differentiation, based on which tissue of origin can be determined. This morphological heterogeneity is explained by aberrant differentiation pathways due to genetic and/or epigenetic instability of the tumor cells. Comparing the two models in the context of continuing mutations and selective pressure, the two models may not be very different.



Clonal evolution model re-visited in HNSCC

The definition of a CSC is a cell within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs can thus only be defined experimentally by their ability to recapitulate the generation of a continuously growing tumor 6. As is the CSC model of hematopoietic malignancies, the xenotransplantation model, cell surface analysis, and clonal cell analysis have been used to determine which model can explain tumor progression and intratumoral heterogeneity. Cameron et al., indeed, employed these methods to examine the biologic basis for tumor initiation of HNSCC 3. Self-renewal capability of CSCs can be assessed by a colony- forming assay and tumor formation in irradiated mice and/or immunodeficient mice. Implantation into immunodeficient mice is the most reliable method; however, there are biological constraints which make the interpretation of the xenotransplantation assay difficult. The result is biased by the process of tumor cell homing and successful engraftment. Poor tumor initiation can also be explained by post-transplant loss of the implanted cells. In Cameron’s paper, tracing by GFP labeling of implanted cells eliminated the possibility of post-transplant loss in vivo 3.



Isolation of a subpopulation of tumor cells with stem cell-like features and tumorigenic capabilities results in formation of many solid tumors. To identify CSCs in solid tumors, tumor cells are fractionated by cell surface markers, and implanted into immunodeficient mice to assess xenograft growth and cellular composition. Cell surface molecules such as CD24, CD44, and CD133 have been analyzed for CSC markers. CD24-low/negative CD44-positive fractions of breast cancers have significantly higher tumorigenic potential in immunodeficient mice 7 and in a single tissue section of primary uncultured human breast tumors 8. CSCs in the brain tumor are identified by isolation with CD133 marker and the side population 9. These studies are followed by similar findings in a wide variety of tumors originated from prostate, colon, pancreas, liver, and melanocytes 10-13. In addition to cell surface markers, aldehyde dehydrogenase 1A1 and cystatin E/M are suggested as a CSC marker of the prostate and a non-cancer cell marker of the brain, respectively 14, 15. Controversial results are reported in brain tumors: both CD133-positive and –negative populations have CSC properties 16. In HNSCC, a CD44-positive population is reported to possess CSC properties 17. On the contrary, the article in this issue reports that no correlation was observed between the expression of specific markers (CD44, CD133, side population) and cells with tumor-initiating activities 3, implying the clonal evolution model in HNSCC.



The controversial results may be in part due to the limitation of the experimental approaches to determine the model. Isolation of CSCs, especially from solid tumors, is relatively difficult, and can be done only by flow cytometric sorting using antibodies. Instead of tumor tissues, Cameron et al. used cell lines and subcloned cells from a single cell. Single cell clones randomly isolated from HNSCC cell lines are all capable of initiating tumors after implantation into mice (Cameron et al.’s paper of this issue, Table II) 3. This result explains the clonal evolution model of HNSCC; however, implanted cells (3 x 103 to 1 x 106) were propagated in vitro after subcloning. This subcloning process includes the possibility for selection of tumor cells with tumor-initiating activity and elimination of tumor cells without it. Thus, experiments with cell lines in combination with the xenotransplantation assay cannot simply be interpreted. Furthermore, tumor initiation in xenotransplantation models of HNSCC is inefficient, and this assessment takes 3 to 6 months after implantation. To clearly determine the model, these methodological difficulties also need to be overcome in the future.



Niche cells derived from tumor cells

Interactions of tumor cells with their microenvironment can lead to altered growth and differentiation. The phenotypic plasticity of tumor cells suggests that dynamic equilibrium exits between CSCs and non-CSCs, depending on signals from the microenvironment 18. Leukemic stem cells express CD44 at a high level, and antibody therapy is developed, based on the CD44-mediated interaction between cancer cells and their microenvironment 19, 20. Anti-CD44 antibody inhibits homing/engraftment of leukemic stem cells, but not that of hematopoietic stem cells. Similarly, engraftment of solid tumors may be affected by CD44 on the supporting cells (microenvironment), and CD44 is indeed a cell surface marker for CSCs of solid tumors such as breast cancer.



Interactions of stromal cells with tumor cells include growth stimulation, angiogenesis and immunocompetence. In this point of view, tumor cells imitate normal tissues where stromal cells support tissue stem cells. These stromal cells can also be differentiated from tumor cells. Clonal variants-derived tumor cells act as stromal-supporting cells and modulate overall initiating activity (Fig. 1). Cameron et al. proposed that this tumor microenvironment is generated by the heterogeneous population of tumor cells in combination with the clonal evolution model in HNSCC 3. The opposing idea is that heterogeneity of tumor cells generates a microenvironment: clonal variants induce varying degrees of angiogenesis through different levels of cytokines such as vascular endothelial growth factor produced from tumor cells 21.



Although the experiments by Cameron et al. were performed by using cell lines and their single cell-derived subclones, the study on the clonal evolution model of HNSCC should be highly evaluated because the old and new issue needs to be solved in each cancer from the viewpoint of therapy. These two models are conceptually essential to treat cancer in a different way. CSCs are the only target for anti-cancerous therapy in the CSC model. In contrast, all the cells are necessarily killed by anti-cancerous therapy in the clonal evolution model because all will be equally able to cause a relapse after therapy. Analysis on primary uncultured HNSCC cells with the same approach will be necessary in the future to determine which model is most consistent.



REFERENCES



1 Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008;88(5):459-463.



2 Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009;138(5):822-829.



3 Cameron S, Dahler A, Endo-Munoz L, et al. Tumour initiating activity and tumour morphology of HNSCC is modulated by interactions between clonal variants within the tumour. Lab Invest;this issue.



4 Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977;197(4302):461-463.



5 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730-737.



6 Vries RG, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine. Mol Oncol 2010.



7 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100(7):3983-3988.



8 Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M. Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 2009;89(8):857-866.



9 Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63(18):5821-5828.



10 Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117(Pt 16):3539-3545.



11 Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 2005;102(19):6942-6947.



12 Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445(7123):111-115.



13 Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67(3):1030-1037.



14 Li T, Su Y, Mei Y, et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. Lab Invest 2010;90(2):234-244.



15 Qiu J, Ai L, Ramachandran C, et al. Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Lab Invest 2008;88(9):910-925.



16 Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008;88(8):808-815.



17 Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104(3):973-978.



18 Dhodapkar MV. Immunity to stemness genes in human cancer. Curr Opin Immunol 2010;22(2):245-250.



19 Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12(10):1167-1174.



20 Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006;12(10):1175-1180.



21 Hasina R, Whipple ME, Martin LE, Kuo WP, Ohno-Machado L, Lingen MW. Angiogenic heterogeneity in head and neck squamous cell carcinoma: biological and therapeutic implications. Lab Invest 2008;88(4):342-353.

Clonal evolution model strikes back at cancer stem cell hierarchical model in the Head & Neck tumor

The two models of tumor progression in head and neck squamous cell carcinoma are proposed: stochastic clonal evolution model and cancer stem hierarchy model. Cell surface marker analysis and clonal cell analysis in combination with a xenotransplant approach have been performed to determine the model, but the interpretation is sometimes difficult due to multiple biological parameters and the stromal environment permissive to tumor growth. Understanding of which model is most applicable to head and neck squamous cell carcinoma as well as other cancers should be further promoted because it suggests differential approaches in treatment.

Monday, October 18, 2010

Thursday, September 23, 2010

Reproductive Biology strikes back.

I want to look on your face through my eyes. I got to save you. I won't leave you.
7 minutes ago via web
Delete
Copy. That is too close.
10 minutes ago via web
Hate makes you more powerful. Never, never. You fail. I am Scientist. I will be destroyed. Father, please.
12 minutes ago via web
There is no conflict. Do not underestimate power of Science. Good shot. Don't let me down. It is only way to save friends.
17 minutes ago via web
You shall have aggressive feeling.
21 minutes ago via web
I know.
23 minutes ago via web
Our alliance will die. Take a Pipetman. I love Science.
23 minutes ago via web
I have a bad feeling with this.
29 minutes ago via web

Science Wars

May Science with us.

I must obey Science.

It is pointless to resist.

Regulation and Science are different.

Administration and Science are different.

Take a lab weapon. It is our destiny like our masters.

Tuesday, September 14, 2010

バーウィック

小児難病に対する医療ほど、治療費を(親が)支払うことができない場合がある。もちろん、社会的な制度上で保護されている場合もあるが、そうでない場合も多い。この事実を直視しようとせずに、現在の仕組みを維持することに専念することも可能です。公平かつ文明的かつ人道的な医療費のシステムは、難病の有する方々への治療を可能にするシステムでなければなりません。

メモ:日本では、世界最多のCT, MRI、欧米の2倍から3倍の病床数、受診回数、放射線被曝量がある。

Sunday, August 8, 2010

Alternative lengthening of telomeres (ALT)

Nature. 2010 Apr 8;464(7290):858-63. Epub 2010 Mar 24.
Zscan4 regulates telomere elongation and genomic stability in ES cells.
Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, Stagg CA, Hoang HG, Yang HT, Indig FE, Wersto RP, Ko MS.

Developmental Genomics and Aging Section, Laboratory of Genetics, NIH, Baltimore, Maryland 21224, USA
Abstract
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.
PMID: 20336070



Genes Cells. 2006 Nov;11(11):1305-15.
Rad54 is dispensable for the ALT pathway.
Akiyama K, Yusa K, Hashimoto H, Poonepalli A, Hande MP, Kakazu N, Takeda J, Tachibana M, Shinkai Y.
Department of Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
Abstract
Some immortal cells use the alternative lengthening of telomeres (ALT) pathway to maintain their telomeres instead of telomerase. Previous studies revealed that homologous recombination (HR) contributes to the ALT pathway. To further elucidate molecular mechanisms, we inactivated Rad54 involved in HR, in mouse ALT embryonic stem (ES) cells. Although Rad54-deficient ALT ES cells showed radiosensitivity in line with expectation, cell growth and telomeres were maintained for more than 200 cell divisions. Furthermore, although MMC-stimulated sister chromatid exchange (SCE) was suppressed in the Rad54-deficient ALT ES cells, ALT-associated telomere SCE was not affected. This is the first genetic evidence that mouse Rad54 is dispensable for the ALT pathway.
PMID: 17054727


2: Henson JD, Reddel RR. Assaying and investigating Alternative Lengthening of
Telomeres activity in human cells and cancers. FEBS Lett. 2010 Jun 11. [Epub
ahead of print] PubMed PMID: 20542034.


7: Ju X. New roles of hRAD21 in alternative lengthening of telomeres in cancer
genesis. Cancer Biol Ther. 2010 Jun 9;9(12). [Epub ahead of print] PubMed PMID:
20431348.


10: Zhao B, Wang ZJ, Yi BQ, Ma HC, Xu HM. hRad21 overexpresses and localizes to
the ALT-associated promyelocytic leukemia body in ALT cells. Cancer Biol Ther.
2010 Jun 26;9(12). [Epub ahead of print] PubMed PMID: 20364118.


11: Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models,
mechanisms and implications. Nat Rev Genet. 2010 May;11(5):319-30. Epub 2010 Mar
30. Review. PubMed PMID: 20351727.


13: Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG,
Herbig U, Santos JH. A mutant telomerase defective in nuclear-cytoplasmic
shuttling fails to immortalize cells and is associated with mitochondrial
dysfunction. Aging Cell. 2010 Apr;9(2):203-19. PubMed PMID: 20089117.


15: Shalaby T, Hiyama E, Grotzer MA. Telomere maintenance as therapeutic target
in embryonal tumours. Anticancer Agents Med Chem. 2010 Mar;10(3):196-212. Review.
PubMed PMID: 20017721.


16: Onitake Y, Hiyama E, Kamei N, Yamaoka H, Sueda T, Hiyama K. Telomere biology
in neuroblastoma: telomere binding proteins and alternative strengthening of
telomeres. J Pediatr Surg. 2009 Dec;44(12):2258-66. PubMed PMID: 20006006.


17: Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, Neumann AA, Reddel RR.
Spontaneous occurrence of telomeric DNA damage response in the absence of
chromosome fusions. Nat Struct Mol Biol. 2009 Dec;16(12):1244-51. Epub 2009 Nov
22. PubMed PMID: 19935685.


18: Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AY, Pickett HA, Reddel RR. DNA
C-circles are specific and quantifiable markers of
alternative-lengthening-of-telomeres activity. Nat Biotechnol. 2009
Dec;27(12):1181-5. Epub . PubMed PMID: 19935656.


19: Bhattacharyya S, Sandy A, Groden J. Unwinding protein complexes in
ALTernative telomere maintenance. J Cell Biochem. 2010 Jan 1;109(1):7-15. Review.
PubMed PMID: 19911388; PubMed Central PMCID: PMC2892175.


20: Yu J, Lan J, Wang C, Wu Q, Zhu Y, Lai X, Sun J, Jin C, Huang H. PML3
interacts with TRF1 and is essential for ALT-associated PML bodies assembly in
U2OS cells. Cancer Lett. 2010 May 28;291(2):177-86. Epub 2009 Nov 8. PubMed PMID:
19900757.


21: Basenko EY, Cesare AJ, Iyer S, Griffith JD, McEachern MJ. Telomeric circles
are abundant in the stn1-M1 mutant that maintains its telomeres through
recombination. Nucleic Acids Res. 2010 Jan;38(1):182-9. Epub 2009 Oct 25. PubMed
PMID: 19858100; PubMed Central PMCID: PMC2800209.


22: Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Ochi M. Telomeres and
telomerase in sarcomas. Anticancer Res. 2009 Oct;29(10):3833-6. Review. PubMed
PMID: 19846916.


23: Tomaska L, Nosek J, Kramara J, Griffith JD. Telomeric circles: universal
players in telomere maintenance? Nat Struct Mol Biol. 2009 Oct;16(10):1010-5.
Epub 2009 Oct 6. PubMed PMID: 19809492.


24: Temime-Smaali N, Guittat L, Sidibe A, Shin-ya K, Trentesaux C, Riou JF. The
G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIalpha to
G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells. PLoS
One. 2009 Sep 9;4(9):e6919. PubMed PMID: 19742304; PubMed Central PMCID:
PMC2732903.


25: Subhawong AP, Heaphy CM, Argani P, Konishi Y, Kouprina N, Nassar H, Vang R,
Meeker AK. The alternative lengthening of telomeres phenotype in breast carcinoma
is associated with HER-2 overexpression. Mod Pathol. 2009 Nov;22(11):1423-31.
Epub 2009 Sep 4. PubMed PMID: 19734843.


26: Lafferty-Whyte K, Cairney CJ, Will MB, Serakinci N, Daidone MG, Zaffaroni N,
Bilsland A, Keith WN. A gene expression signature classifying telomerase and ALT
immortalization reveals an hTERT regulatory network and suggests a mesenchymal
stem cell origin for ALT. Oncogene. 2009 Oct 29;28(43):3765-74. Epub 2009 Aug 17.
PubMed PMID: 19684619; PubMed Central PMCID: PMC2875172.


27: Iwasaki H, Nabeshima K, Nishio J, Jimi S, Aoki M, Koga K, Hamasaki M, Hayashi
H, Mogi A. Pathology of soft-tissue tumors: daily diagnosis, molecular
cytogenetics and experimental approach. Pathol Int. 2009 Aug;59(8):501-21.
Review. Erratum in: Pathol Int. 2009 Dec;59(12):900. PubMed PMID: 19627534.


28: Zeng S, Yang Q. The MUS81 endonuclease is essential for telomerase negative
cell proliferation. Cell Cycle. 2009 Jul 15;8(14):2157-60. PubMed PMID: 19617716.


29: Chen Z, Zheng KW, Hao YH, Tan Z. Reduced or diminished stabilization of the
telomere G-quadruplex and inhibition of telomerase by small chemical ligands
under molecular crowding condition. J Am Chem Soc. 2009 Aug 5;131(30):10430-8.
PubMed PMID: 19588966.


30: Cohen Z, Lavi S. Replication independent formation of extrachromosomal
circular DNA in mammalian cell-free system. PLoS One. 2009 Jul 1;4(7):e6126.
PubMed PMID: 19568438; PubMed Central PMCID: PMC2699479.


31: Liu JP, Nicholls C, Chen SM, Li H, Tao ZZ. Strategies of treating cancer by
cytokine regulation of chromosome end remodelling. Clin Exp Pharmacol Physiol.
2010 Jan;37(1):88-92. Epub 2009 Jun 29. Review. PubMed PMID: 19566820.


32: Yuan J, Yang BM, Zhong ZH, Shats I, Milyavsky M, Rotter V, Lock RB, Reddel
RR, MacKenzie KL. Upregulation of survivin during immortalization of
nontransformed human fibroblasts transduced with telomerase reverse
transcriptase. Oncogene. 2009 Jul 23;28(29):2678-89. Epub 2009 Jun 1. PubMed
PMID: 19483728.


33: Jiang WQ, Zhong ZH, Nguyen A, Henson JD, Toouli CD, Braithwaite AW, Reddel
RR. Induction of alternative lengthening of telomeres-associated PML bodies by
p53/p21 requires HP1 proteins. J Cell Biol. 2009 Jun 1;185(5):797-810. Epub 2009
May 25. PubMed PMID: 19468068; PubMed Central PMCID: PMC2711592.


34: Royle NJ, Méndez-Bermúdez A, Gravani A, Novo C, Foxon J, Williams J, Cotton
V, Hidalgo A. The role of recombination in telomere length maintenance. Biochem
Soc Trans. 2009 Jun;37(Pt 3):589-95. PubMed PMID: 19442255.


35: Folini M, Gandellini P, Zaffaroni N. Targeting the telosome: therapeutic
implications. Biochim Biophys Acta. 2009 Apr;1792(4):309-16. Epub 2009 Feb 5.
Review. PubMed PMID: 19419699.


36: Else T. Telomeres and telomerase in adrenocortical tissue maintenance,
carcinogenesis, and aging. J Mol Endocrinol. 2009 Oct;43(4):131-41. Epub 2009 May
1. Review. PubMed PMID: 19411304.


37: Zeng S, Xiang T, Pandita TK, Gonzalez-Suarez I, Gonzalo S, Harris CC, Yang Q.
Telomere recombination requires the MUS81 endonuclease. Nat Cell Biol. 2009
May;11(5):616-23. Epub 2009 Apr 12. PubMed PMID: 19363487; PubMed Central PMCID:
PMC2675667.


38: Matsuo T, Shay JW, Wright WE, Hiyama E, Shimose S, Kubo T, Sugita T, Yasunaga
Y, Ochi M. Telomere-maintenance mechanisms in soft-tissue malignant fibrous
histiocytomas. J Bone Joint Surg Am. 2009 Apr;91(4):928-37. PubMed PMID:
19339578.


39: Bhattacharyya S, Keirsey J, Russell B, Kavecansky J, Lillard-Wetherell K,
Tahmaseb K, Turchi JJ, Groden J. Telomerase-associated protein 1, HSP90, and
topoisomerase IIalpha associate directly with the BLM helicase in immortalized
cells using ALT and modulate its helicase activity using telomeric DNA
substrates. J Biol Chem. 2009 May 29;284(22):14966-77. Epub 2009 Mar 27. PubMed
PMID: 19329795; PubMed Central PMCID: PMC2685679.


40: Tilman G, Loriot A, Van Beneden A, Arnoult N, Londoño-Vallejo JA, De Smet C,
Decottignies A. Subtelomeric DNA hypomethylation is not required for telomeric
sister chromatid exchanges in ALT cells. Oncogene. 2009 Apr 9;28(14):1682-93.
Epub 2009 Mar 2. PubMed PMID: 19252523.


41: Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR. Control of
telomere length by a trimming mechanism that involves generation of t-circles.
EMBO J. 2009 Apr 8;28(7):799-809. Epub 2009 Feb 12. PubMed PMID: 19214183; PubMed
Central PMCID: PMC2670870.


42: Jegou T, Chung I, Heuvelman G, Wachsmuth M, Görisch SM, Greulich-Bode KM,
Boukamp P, Lichter P, Rippe K. Dynamics of telomeres and promyelocytic leukemia
nuclear bodies in a telomerase-negative human cell line. Mol Biol Cell. 2009
Apr;20(7):2070-82. Epub 2009 Feb 11. PubMed PMID: 19211845; PubMed Central PMCID:
PMC2663922.


43: Akimcheva S, Zellinger B, Riha K. Genome stability in Arabidopsis cells
exhibiting alternative lengthening of telomeres. Cytogenet Genome Res.
2008;122(3-4):388-95. Epub 2009 Jan 30. PubMed PMID: 19188710.


44: Royle NJ, Foxon J, Jeyapalan JN, Mendez-Bermudez A, Novo CL, Williams J,
Cotton VE. Telomere length maintenance--an ALTernative mechanism. Cytogenet
Genome Res. 2008;122(3-4):281-91. Epub 2009 Jan 30. Review. PubMed PMID:
19188697.


45: Morrish TA, Greider CW. Short telomeres initiate telomere recombination in
primary and tumor cells. PLoS Genet. 2009 Jan;5(1):e1000357. Epub 2009 Jan 30.
PubMed PMID: 19180191; PubMed Central PMCID: PMC2627939.


46: Omori Y, Nakayama F, Li D, Kanemitsu K, Semba S, Ito A, Yokozaki H.
Alternative lengthening of telomeres frequently occurs in mismatch repair
system-deficient gastric carcinoma. Cancer Sci. 2009 Mar;100(3):413-8. Epub 2008
Dec 16. PubMed PMID: 19154407.


47: De Boeck G, Forsyth RG, Praet M, Hogendoorn PC. Telomere-associated proteins:
cross-talk between telomere maintenance and telomere-lengthening mechanisms. J
Pathol. 2009 Feb;217(3):327-44. Review. PubMed PMID: 19142887.


48: Saharia A, Stewart SA. FEN1 contributes to telomere stability in ALT-positive
tumor cells. Oncogene. 2009 Feb 26;28(8):1162-7. Epub 2009 Jan 12. PubMed PMID:
19137021.


49: Déjardin J, Kingston RE. Purification of proteins associated with specific
genomic Loci. Cell. 2009 Jan 9;136(1):175-86. PubMed PMID: 19135898.


50: Fan Q, Zhang F, Barrett B, Ren K, Andreassen PR. A role for monoubiquitinated
FANCD2 at telomeres in ALT cells. Nucleic Acids Res. 2009 Apr;37(6):1740-54. Epub
2009 Jan 7. PubMed PMID: 19129235; PubMed Central PMCID: PMC2665210.


51: Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM. Telomerase activity is
associated with an increase in DNA methylation at the proximal subtelomere and a
reduction in telomeric transcription. Nucleic Acids Res. 2009 Mar;37(4):1152-9.
Epub 2009 Jan 7. PubMed PMID: 19129228; PubMed Central PMCID: PMC2651807.


52: Muntoni A, Neumann AA, Hills M, Reddel RR. Telomere elongation involves
intra-molecular DNA replication in cells utilizing alternative lengthening of
telomeres. Hum Mol Genet. 2009 Mar 15;18(6):1017-27. Epub 2008 Dec 18. PubMed
PMID: 19095716; PubMed Central PMCID: PMC2649016.


53: Grandin N, Charbonneau M. Telomerase- and Rad52-independent immortalization
of budding yeast by an inherited-long-telomere pathway of telomeric repeat
amplification. Mol Cell Biol. 2009 Feb;29(4):965-85. Epub 2008 Dec 1. PubMed
PMID: 19047370; PubMed Central PMCID: PMC2643805.


54: Spardy N, Duensing A, Hoskins EE, Wells SI, Duensing S. HPV-16 E7 reveals a
link between DNA replication stress, fanconi anemia D2 protein, and alternative
lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res.
2008 Dec 1;68(23):9954-63. PubMed PMID: 19047177; PubMed Central PMCID:
PMC2597390.


55: Bechard LH, Butuner BD, Peterson GJ, McRae W, Topcu Z, McEachern MJ. Mutant
telomeric repeats in yeast can disrupt the negative regulation of
recombination-mediated telomere maintenance and create an alternative lengthening
of telomeres-like phenotype. Mol Cell Biol. 2009 Feb;29(3):626-39. Epub 2008 Nov
24. PubMed PMID: 19029249; PubMed Central PMCID: PMC2630680.


56: Nabetani A, Ishikawa F. Unusual telomeric DNAs in human telomerase-negative
immortalized cells. Mol Cell Biol. 2009 Feb;29(3):703-13. Epub 2008 Nov 17.
PubMed PMID: 19015236; PubMed Central PMCID: PMC2630689.


57: Gagos S, Chiourea M, Christodoulidou A, Apostolou E, Raftopoulou C, Deustch
S, Jefford CE, Irminger-Finger I, Shay JW, Antonarakis SE. Pericentromeric
instability and spontaneous emergence of human neoacrocentric and minute
chromosomes in the alternative pathway of telomere lengthening. Cancer Res. 2008
Oct 1;68(19):8146-55. PubMed PMID: 18829574.


58: Kow K, Thamm DH, Terry J, Grunerud K, Bailey SM, Withrow SJ, Lana SE. Impact
of telomerase status on canine osteosarcoma patients. J Vet Intern Med. 2008
Nov-Dec;22(6):1366-72. Epub 2008 Aug 25. PubMed PMID: 18761602.


59: Gagos S, Papaioannou G, Chiourea M, Merk-Loretti S, Jefford CE, Mikou P,
Irminger-Finger I, Liossi A, Blouin JL, Dahoun S. Unusually stable abnormal
karyotype in a highly aggressive melanoma negative for telomerase activity. Mol
Cytogenet. 2008 Aug 22;1:20. PubMed PMID: 18718029; PubMed Central PMCID:
PMC2533344.


60: Dlaska M, Anderl C, Eisterer W, Bechter OE. Detection of circular telomeric
DNA without 2D gel electrophoresis. DNA Cell Biol. 2008 Sep;27(9):489-96. PubMed
PMID: 18694327.


61: Deem A, Barker K, Vanhulle K, Downing B, Vayl A, Malkova A. Defective
break-induced replication leads to half-crossovers in Saccharomyces cerevisiae.
Genetics. 2008 Aug;179(4):1845-60. Epub 2008 Aug 9. PubMed PMID: 18689895; PubMed
Central PMCID: PMC2516063.


62: Ohali A, Avigad S, Naumov I, Goshen Y, Ash S, Yaniv I. Different telomere
maintenance mechanisms in alveolar and embryonal rhabdomyosarcoma. Genes
Chromosomes Cancer. 2008 Nov;47(11):965-70. PubMed PMID: 18663749.


63: Villa R, Daidone MG, Motta R, Venturini L, De Marco C, Vannelli A, Kusamura
S, Baratti D, Deraco M, Costa A, Reddel RR, Zaffaroni N. Multiple mechanisms of
telomere maintenance exist and differentially affect clinical outcome in diffuse
malignant peritoneal mesothelioma. Clin Cancer Res. 2008 Jul 1;14(13):4134-40.
PubMed PMID: 18593991.


64: Temime-Smaali N, Guittat L, Wenner T, Bayart E, Douarre C, Gomez D,
Giraud-Panis MJ, Londono-Vallejo A, Gilson E, Amor-Guéret M, Riou JF.
Topoisomerase IIIalpha is required for normal proliferation and telomere
stability in alternative lengthening of telomeres. EMBO J. 2008 May
21;27(10):1513-24. Epub 2008 Apr 17. PubMed PMID: 18418389; PubMed Central PMCID:
PMC2396391.


65: Cairney CJ, Hoare SF, Daidone MG, Zaffaroni N, Keith WN. High level of
telomerase RNA gene expression is associated with chromatin modification, the ALT
phenotype and poor prognosis in liposarcoma. Br J Cancer. 2008 Apr
22;98(8):1467-74. Epub 2008 Apr 15. PubMed PMID: 18414473; PubMed Central PMCID:
PMC2361713.


66: Zhao YM, Li JY, Lan JP, Lai XY, Luo Y, Sun J, Yu J, Zhu YY, Zeng FF, Zhou Q,
Huang H. Cell cycle dependent telomere regulation by telomerase in human bone
marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2008 May
16;369(4):1114-9. Epub 2008 Mar 11. PubMed PMID: 18339310.


67: Jeyapalan JN, Mendez-Bermudez A, Zaffaroni N, Dubrova YE, Royle NJ. Evidence
for alternative lengthening of telomeres in liposarcomas in the absence of
ALT-associated PML bodies. Int J Cancer. 2008 Jun 1;122(11):2414-21. PubMed PMID:
18311780.


68: Forsyth RG, De Boeck G, Bekaert S, De Meyer T, Taminiau AH, Uyttendaele D,
Roels H, Praet MM, Hogendoorn PC. Telomere biology in giant cell tumour of bone.
J Pathol. 2008 Apr;214(5):555-63. PubMed PMID: 18278785.


69: Takemura M, Sugimura K, Okumura K, Limsirichaikul S, Suzuki M, Yamada Y,
Yoshida S. Hyper-phosphorylated retinoblastoma protein suppresses telomere
elongation. Biosci Biotechnol Biochem. 2008 Feb;72(2):630-5. Epub 2008 Feb 7.
PubMed PMID: 18256459.


70: Růcková E, Friml J, Procházková Schrumpfová P, Fajkus J. Role of alternative
telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol
Biol. 2008 Apr;66(6):637-46. Epub 2008 Feb 1. PubMed PMID: 18239859.


71: Cesare AJ, Reddel RR. Telomere uncapping and alternative lengthening of
telomeres. Mech Ageing Dev. 2008 Jan-Feb;129(1-2):99-108. Epub 2007 Dec 8.
Review. PubMed PMID: 18215414.


72: Else T, Giordano TJ, Hammer GD. Evaluation of telomere length maintenance
mechanisms in adrenocortical carcinoma. J Clin Endocrinol Metab. 2008
Apr;93(4):1442-9. Epub 2008 Jan 15. PubMed PMID: 18198226.


73: Yi BQ, Zhao B, Wang ZJ. [Expression of hRad21 and clinicopathological
analysis in gastrointestinal malignant tumors maintained their telomeres by a
mechanism of alternative lengthening of telomeres]. Zhonghua Wei Chang Wai Ke Za
Zhi. 2008 Jan;11(1):67-71. Chinese. PubMed PMID: 18197499.


74: Tang J, Kan ZY, Yao Y, Wang Q, Hao YH, Tan Z. G-quadruplex preferentially
forms at the very 3' end of vertebrate telomeric DNA. Nucleic Acids Res. 2008
Mar;36(4):1200-8. Epub 2007 Dec 23. PubMed PMID: 18158301; PubMed Central PMCID:
PMC2275102.


75: Venturini L, Erdas R, Costa A, Gronchi A, Pilotti S, Zaffaroni N, Daidone M.
ALT-associated promyelocytic leukaemia body (APB) detection as a reproducible
tool to assess alternative lengthening of telomere stability in liposarcomas. J
Pathol. 2008 Mar;214(4):410-4. PubMed PMID: 18085522.


76: Stagno D'Alcontres M, Mendez-Bermudez A, Foxon JL, Royle NJ, Salomoni P. Lack
of TRF2 in ALT cells causes PML-dependent p53 activation and loss of telomeric
DNA. J Cell Biol. 2007 Dec 3;179(5):855-67. PubMed PMID: 18056407; PubMed Central
PMCID: PMC2099206.


77: Blagoev KB, Goodwin EH. Telomere exchange and asymmetric segregation of
chromosomes can account for the unlimited proliferative potential of ALT cell
populations. DNA Repair (Amst). 2008 Feb 1;7(2):199-204. Epub 2007 Nov 19. PubMed
PMID: 18006387.


78: Vespa L, Warrington RT, Mokros P, Siroky J, Shippen DE. ATM regulates the
length of individual telomere tracts in Arabidopsis. Proc Natl Acad Sci U S A.
2007 Nov 13;104(46):18145-50. Epub 2007 Nov 7. PubMed PMID: 17989233; PubMed
Central PMCID: PMC2084311.


79: Liu L, Bailey SM, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler
L, Seyfang A, Blasco MA, Keefe DL. Telomere lengthening early in development. Nat
Cell Biol. 2007 Dec;9(12):1436-41. Epub 2007 Nov 4. PubMed PMID: 17982445.


80: Cheung AL, Deng W. Telomere dysfunction, genome instability and cancer. Front
Biosci. 2008 Jan 1;13:2075-90. Review. PubMed PMID: 17981693.


81: Grudic A, Jul-Larsen A, Haring SJ, Wold MS, L√∏nning PE, Bjerkvig R, B√∏e SO.
Replication protein A prevents accumulation of single-stranded telomeric DNA in
cells that use alternative lengthening of telomeres. Nucleic Acids Res.
2007;35(21):7267-78. Epub 2007 Oct 24. PubMed PMID: 17959650; PubMed Central
PMCID: PMC2175364.


82: Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres:
a puzzling structure. Biochimie. 2008 Jan;90(1):108-15. Epub 2007 Sep 22. Review.
PubMed PMID: 17954006.


83: Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT)
and chromatin: is there a connection? Biochimie. 2008 Jan;90(1):5-12. Epub 2007
Sep 2. Review. PubMed PMID: 17935854.


84: Bollmann FM. Targeting ALT: the role of alternative lengthening of telomeres
in pathogenesis and prevention of cancer. Cancer Treat Rev. 2007 Dec;33(8):704-9.
Epub 2007 Oct 22. Review. PubMed PMID: 17933469.


85: Johnson JE, Gettings EJ, Schwalm J, Pei J, Testa JR, Litwin S, von Mehren M,
Broccoli D. Whole-genome profiling in liposarcomas reveals genetic alterations
common to specific telomere maintenance mechanisms. Cancer Res. 2007 Oct
1;67(19):9221-8. PubMed PMID: 17909028.


86: Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A,
Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F. Human bone
marrow derived mesenchymal stem cells do not undergo transformation after
long-term in vitro culture and do not exhibit telomere maintenance mechanisms.
Cancer Res. 2007 Oct 1;67(19):9142-9. PubMed PMID: 17909019.


87: Zhdanova NS, Rubtsov NB, Minina IuM. [Terminal regions of mammal chromosomes:
plasticity and role in evolution]. Genetika. 2007 Jul;43(7):873-86. Review.
Russian. PubMed PMID: 17899805.


88: Plevová P, Bouchal J, Fiurásková M, Papezová M, Krepelová A, Curík R,
Foretov√° L, Navr√°tilov√° M, Zapletalov√° J, Posolda T, Kol√°r Z. PML and TRF2
protein expression in hereditary and sporadic colon cancer. Neoplasma.
2007;54(4):269-77. PubMed PMID: 17822315.


89: Zhong ZH, Jiang WQ, Cesare AJ, Neumann AA, Wadhwa R, Reddel RR. Disruption of
telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that
use alternative lengthening of telomeres. J Biol Chem. 2007 Oct
5;282(40):29314-22. Epub 2007 Aug 9. PubMed PMID: 17693401.


90: Lydeard JR, Jain S, Yamaguchi M, Haber JE. Break-induced replication and
telomerase-independent telomere maintenance require Pol32. Nature. 2007 Aug
16;448(7155):820-3. Epub 2007 Aug 1. PubMed PMID: 17671506.


91: Fasching CL, Neumann AA, Muntoni A, Yeager TR, Reddel RR. DNA damage induces
alternative lengthening of telomeres (ALT) associated promyelocytic leukemia
bodies that preferentially associate with linear telomeric DNA. Cancer Res. 2007
Aug 1;67(15):7072-7. Epub 2007 Jul 24. PubMed PMID: 17652140.


92: Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K. Ku suppresses
formation of telomeric circles and alternative telomere lengthening in
Arabidopsis. Mol Cell. 2007 Jul 6;27(1):163-9. PubMed PMID: 17612498.


93: Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer
cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol. 2007
Jul;14(7):581-90. Epub 2007 Jun 24. PubMed PMID: 17589526.


94: Johnson JE, Broccoli D. Telomere maintenance in sarcomas. Curr Opin Oncol.
2007 Jul;19(4):377-82. Review. PubMed PMID: 17545803.


95: Tabori U, Dome JS. Telomere biology of pediatric cancer. Cancer Invest. 2007
Apr-May;25(3):197-208. Review. PubMed PMID: 17530490.


96: da Costa CE, Egeler RM, Hoogeboom M, Szuhai K, Forsyth RG, Niesters M, de
Krijger RR, Tazi A, Hogendoorn PC, Annels NE. Differences in telomerase
expression by the CD1a+ cells in Langerhans cell histiocytosis reflect the
diverse clinical presentation of the disease. J Pathol. 2007 Jun;212(2):188-97.
PubMed PMID: 17447723.


97: Khoo CM, Carrasco DR, Bosenberg MW, Paik JH, Depinho RA. Ink4a/Arf tumor
suppressor does not modulate the degenerative conditions or tumor spectrum of the
telomerase-deficient mouse. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3931-6.
Epub 2007 Feb 27. PubMed PMID: 17360455; PubMed Central PMCID: PMC1820686.


98: Compton SA, Choi JH, Cesare AJ, Ozgür S, Griffith JD. Xrcc3 and Nbs1 are
required for the production of extrachromosomal telomeric circles in human
alternative lengthening of telomere cells. Cancer Res. 2007 Feb 15;67(4):1513-9.
PubMed PMID: 17308089.


99: Jiang WQ, Zhong ZH, Henson JD, Reddel RR. Identification of candidate
alternative lengthening of telomeres genes by methionine restriction and RNA
interference. Oncogene. 2007 Jul 12;26(32):4635-47. Epub 2007 Feb 5. PubMed PMID:
17297460.


100: Akiyama K, Yusa K, Hashimoto H, Poonepalli A, Hande MP, Kakazu N, Takeda J,
Tachibana M, Shinkai Y. Rad54 is dispensable for the ALT pathway. Genes Cells.
2006 Nov;11(11):1305-15. PubMed PMID: 17054727.


101: Costa A, Daidone MG, Daprai L, Villa R, Cant√π S, Pilotti S, Mariani L,
Gronchi A, Henson JD, Reddel RR, Zaffaroni N. Telomere maintenance mechanisms in
liposarcomas: association with histologic subtypes and disease progression.
Cancer Res. 2006 Sep 1;66(17):8918-24. PubMed PMID: 16951210.


102: Kow K, Bailey SM, Williams ES, Withrow S, Lana SE. Telomerase activity in
canine osteosarcoma. Vet Comp Oncol. 2006 Sep;4(3):184-7. PubMed PMID: 19754815.


103: Siddiqa A, Cavazos DA, Marciniak RA. Targeting telomerase. Rejuvenation Res.
2006 Fall;9(3):378-90. Review. PubMed PMID: 16859479.


104: Celli GB, Denchi EL, de Lange T. Ku70 stimulates fusion of dysfunctional
telomeres yet protects chromosome ends from homologous recombination. Nat Cell
Biol. 2006 Aug;8(8):885-90. Epub 2006 Jul 16. PubMed PMID: 16845382.


105: Fujiwara M, Kamma H, Wu W, Yano Y, Homma S, Satoh H. Alternative lengthening
of telomeres in the human adrenocortical carcinoma cell line H295R. Int J Oncol.
2006 Aug;29(2):445-51. PubMed PMID: 16820888.


106: Chen YJ, Hakin-Smith V, Teo M, Xinarianos GE, Jellinek DA, Carroll T,
McDowell D, MacFarlane MR, Boet R, Baguley BC, Braithwaite AW, Reddel RR, Royds
JA. Association of mutant TP53 with alternative lengthening of telomeres and
favorable prognosis in glioma. Cancer Res. 2006 Jul 1;66(13):6473-6. PubMed PMID:
16818615.


107: Tabori U, Vukovic B, Zielenska M, Hawkins C, Braude I, Rutka J, Bouffet E,
Squire J, Malkin D. The role of telomere maintenance in the spontaneous growth
arrest of pediatric low-grade gliomas. Neoplasia. 2006 Feb;8(2):136-42. PubMed
PMID: 16611406; PubMed Central PMCID: PMC1578515.


108: Brachner A, Sasgary S, Pirker C, Rodgarkia C, Mikula M, Mikulits W,
Bergmeister H, Setinek U, Wieser M, Chin SF, Caldas C, Micksche M, Cerni C,
Berger W. Telomerase- and alternative telomere lengthening-independent telomere
stabilization in a metastasis-derived human non-small cell lung cancer cell line:
effect of ectopic hTERT. Cancer Res. 2006 Apr 1;66(7):3584-92. PubMed PMID:
16585183.


109: Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA. DNA
methyltransferases control telomere length and telomere recombination in
mammalian cells. Nat Cell Biol. 2006 Apr;8(4):416-24. Epub 2006 Mar 26. PubMed
PMID: 16565708.


110: Sebastian S, Grammatica L, Paradiso A. Telomeres, telomerase and oral cancer
(Review). Int J Oncol. 2005 Dec;27(6):1583-96. Review. PubMed PMID: 16273215.


111: Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C, Lebel M, Pathak S,
DePinho RA, Chang S. Elevated telomere-telomere recombination in WRN-deficient,
telomere dysfunctional cells promotes escape from senescence and engagement of
the ALT pathway. Genes Dev. 2005 Nov 1;19(21):2560-70. PubMed PMID: 16264192;
PubMed Central PMCID: PMC1276730.


112: Muntoni A, Reddel RR. The first molecular details of ALT in human tumor
cells. Hum Mol Genet. 2005 Oct 15;14 Spec No. 2:R191-6. Review. PubMed PMID:
16244317.


113: Tanaka H, Mendonca MS, Bradshaw PS, Hoelz DJ, Malkas LH, Meyn MS, Gilley D.
DNA damage-induced phosphorylation of the human telomere-associated protein TRF2.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15539-44. Epub 2005 Oct 13. PubMed
PMID: 16223874; PubMed Central PMCID: PMC1266153.


114: Atkinson SP, Hoare SF, Glasspool RM, Keith WN. Lack of telomerase gene
expression in alternative lengthening of telomere cells is associated with
chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res. 2005 Sep
1;65(17):7585-90. PubMed PMID: 16140922.


115: Iyer S, Chadha AD, McEachern MJ. A mutation in the STN1 gene triggers an
alternative lengthening of telomere-like runaway recombinational telomere
elongation and rapid deletion in yeast. Mol Cell Biol. 2005 Sep;25(18):8064-73.
PubMed PMID: 16135798; PubMed Central PMCID: PMC1234331.


116: Fajkus J, S√Ωkorov√° E, Leitch AR. Telomeres in evolution and evolution of
telomeres. Chromosome Res. 2005;13(5):469-79. Review. PubMed PMID: 16132812.


117: Cerone MA, Autexier C, Londoño-Vallejo JA, Bacchetti S. A human cell line
that maintains telomeres in the absence of telomerase and of key markers of ALT.
Oncogene. 2005 Nov 24;24(53):7893-901. PubMed PMID: 16116482.


118: Johnson JE, Varkonyi RJ, Schwalm J, Cragle R, Klein-Szanto A, Patchefsky A,
Cukierman E, von Mehren M, Broccoli D. Multiple mechanisms of telomere
maintenance exist in liposarcomas. Clin Cancer Res. 2005 Aug 1;11(15):5347-55.
PubMed PMID: 16061847.


119: Sun B, Chen M, Hawks CL, Hornsby PJ. Immortal ALT+ human cells do not
require telomerase reverse transcriptase for malignant transformation. Cancer
Res. 2005 Aug 1;65(15):6512-5. PubMed PMID: 16061628.


120: Jeyapalan JN, Varley H, Foxon JL, Pollock RE, Jeffreys AJ, Henson JD, Reddel
RR, Royle NJ. Activation of the ALT pathway for telomere maintenance can affect
other sequences in the human genome. Hum Mol Genet. 2005 Jul 1;14(13):1785-94.
Epub 2005 May 11. PubMed PMID: 15888482.


121: Zaffaroni N, Villa R, Pastorino U, Cirincione R, Incarbone M, Alloisio M,
Curto M, Pilotti S, Daidone MG. Lack of telomerase activity in lung carcinoids is
dependent on human telomerase reverse transcriptase transcription and alternative
splicing and is associated with long telomeres. Clin Cancer Res. 2005 Apr
15;11(8):2832-9. PubMed PMID: 15837730.


122: Kumakura S, Tsutsui TW, Yagisawa J, Barrett JC, Tsutsui T. Reversible
conversion of immortal human cells from telomerase-positive to
telomerase-negative cells. Cancer Res. 2005 Apr 1;65(7):2778-86. PubMed PMID:
15805278.


123: Marciniak RA, Cavazos D, Montellano R, Chen Q, Guarente L, Johnson FB. A
novel telomere structure in a human alternative lengthening of telomeres cell
line. Cancer Res. 2005 Apr 1;65(7):2730-7. PubMed PMID: 15805272.


124: Fasching CL, Bower K, Reddel RR. Telomerase-independent telomere length
maintenance in the absence of alternative lengthening of telomeres-associated
promyelocytic leukemia bodies. Cancer Res. 2005 Apr 1;65(7):2722-9. PubMed PMID:
15805271.


125: Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang AC, Reddel RR. Suppression
of alternative lengthening of telomeres by Sp100-mediated sequestration of the
MRE11/RAD50/NBS1 complex. Mol Cell Biol. 2005 Apr;25(7):2708-21. Erratum in: Mol
Cell Biol. 2005 May;25(10):4334. PubMed PMID: 15767676; PubMed Central PMCID:
PMC1061646.


126: Pennarun G, Granotier C, Gauthier LR, Gomez D, Hoffschir F, Mandine E, Riou
JF, Mergny JL, Mailliet P, Boussin FD. Apoptosis related to telomere instability
and cell cycle alterations in human glioma cells treated by new highly selective
G-quadruplex ligands. Oncogene. 2005 Apr 21;24(18):2917-28. PubMed PMID:
15735722.


127: Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, Wharton
SB, Jellinek DA, Arbuckle SM, Yoo J, Robinson BG, Learoyd DL, Stalley PD, Bonar
SF, Yu D, Pollock RE, Reddel RR. A robust assay for alternative lengthening of
telomeres in tumors shows the significance of alternative lengthening of
telomeres in sarcomas and astrocytomas. Clin Cancer Res. 2005 Jan 1;11(1):217-25.
PubMed PMID: 15671549.


128: Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L. Amplification of
telomeric arrays via rolling-circle mechanism. J Biol Chem. 2005 Mar
18;280(11):10840-5. Epub 2005 Jan 18. PubMed PMID: 15657051.


129: Mandell JG, Goodrich KJ, Bähler J, Cech TR. Expression of a RecQ helicase
homolog affects progression through crisis in fission yeast lacking telomerase. J
Biol Chem. 2005 Feb 18;280(7):5249-57. Epub 2004 Dec 8. PubMed PMID: 15591066.


130: Higaki T, Watanabe T, Tamatomi I, Tahara H, Sugimoto M, Furuichi Y, Ide T.
Terminal telomere repeats are actually short in telomerase-negative immortal
human cells. Biol Pharm Bull. 2004 Dec;27(12):1932-8. PubMed PMID: 15577208.


131: Cabuy E, Newton C, Roberts T, Newbold R, Slijepcevic P. Identification of
subpopulations of cells with differing telomere lengths in mouse and human cell
lines by flow FISH. Cytometry A. 2004 Dec;62(2):150-61. PubMed PMID: 15523603.


132: Cesare AJ, Griffith JD. Telomeric DNA in ALT cells is characterized by free
telomeric circles and heterogeneous t-loops. Mol Cell Biol. 2004
Nov;24(22):9948-57. PubMed PMID: 15509797; PubMed Central PMCID: PMC525488.


133: Sanders RP, Drissi R, Billups CA, Daw NC, Valentine MB, Dome JS. Telomerase
expression predicts unfavorable outcome in osteosarcoma. J Clin Oncol. 2004 Sep
15;22(18):3790-7. PubMed PMID: 15365076.


134: Ulaner GA, Hoffman AR, Otero J, Huang HY, Zhao Z, Mazumdar M, Gorlick R,
Meyers P, Healey JH, Ladanyi M. Divergent patterns of telomere maintenance
mechanisms among human sarcomas: sharply contrasting prevalence of the
alternative lengthening of telomeres mechanism in Ewing's sarcomas and
osteosarcomas. Genes Chromosomes Cancer. 2004 Oct;41(2):155-62. PubMed PMID:
15287028.


135: Bailey SM, Brenneman MA, Goodwin EH. Frequent recombination in telomeric DNA
may extend the proliferative life of telomerase-negative cells. Nucleic Acids
Res. 2004 Jul 16;32(12):3743-51. Print 2004. PubMed PMID: 15258249; PubMed
Central PMCID: PMC484178.


136: Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK,
Schonberg SA, German J, Turchi JJ, Orren DK, Groden J. Association and regulation
of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet. 2004
Sep 1;13(17):1919-32. Epub 2004 Jun 30. PubMed PMID: 15229185.


137: Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, K√∏lvraa S, May A,
Seidman MM, Bohr VA. The Werner syndrome helicase and exonuclease cooperate to
resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell. 2004
Jun 18;14(6):763-74. PubMed PMID: 15200954.


138: Razak ZR, Varkonyi RJ, Kulp-McEliece M, Caslini C, Testa JR, Murphy ME,
Broccoli D. p53 differentially inhibits cell growth depending on the mechanism of
telomere maintenance. Mol Cell Biol. 2004 Jul;24(13):5967-77. PubMed PMID:
15199150; PubMed Central PMCID: PMC480899.


139: Bechter OE, Zou Y, Walker W, Wright WE, Shay JW. Telomeric recombination in
mismatch repair deficient human colon cancer cells after telomerase inhibition.
Cancer Res. 2004 May 15;64(10):3444-51. PubMed PMID: 15150096.


140: Montgomery E, Argani P, Hicks JL, DeMarzo AM, Meeker AK. Telomere lengths of
translocation-associated and nontranslocation-associated sarcomas differ
dramatically. Am J Pathol. 2004 May;164(5):1523-9. PubMed PMID: 15111298; PubMed
Central PMCID: PMC1615673.


141: Dettlaff-Pokora A, Schlichtholz B. [Alternative lengthening of telomeres].
Postepy Biochem. 2003;49(3):147-56. Review. Polish. PubMed PMID: 15083607.


142: Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1, and
hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of
telomeres-associated promyelocytic leukemia body. J Biol Chem. 2004 Jun
11;279(24):25849-57. Epub 2004 Apr 9. PubMed PMID: 15075340.


143: Londoño-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR.
Alternative lengthening of telomeres is characterized by high rates of telomeric
exchange. Cancer Res. 2004 Apr 1;64(7):2324-7. PubMed PMID: 15059879.


144: Mathieu N, Pirzio L, Freulet-Marrière MA, Desmaze C, Sabatier L. Telomeres
and chromosomal instability. Cell Mol Life Sci. 2004 Mar;61(6):641-56. Review.
PubMed PMID: 15052408.


145: Bechter OE, Shay JW, Wright WE. The frequency of homologous recombination in
human ALT cells. Cell Cycle. 2004 May;3(5):547-9. Epub 2004 May 10. PubMed PMID:
15034305.


146: Ibanez de Caceres I, Frolova N, Varkonyi RJ, Dulaimi E, Meropol NJ, Broccoli
D, Cairns P. Telomerase is frequently activated in tumors with microsatellite
instability. Cancer Biol Ther. 2004 Mar;3(3):289-92. Epub 2004 Mar 10. PubMed
PMID: 14726659.


147: Sotillo-Piñeiro E, Sierrasesúmaga L, Patiñno-García A. Telomerase activity
and telomere length in primary and metastatic tumors from pediatric bone cancer
patients. Pediatr Res. 2004 Feb;55(2):231-5. Epub 2003 Nov 19. PubMed PMID:
14630995.


148: Bechter OE, Zou Y, Shay JW, Wright WE. Homologous recombination in human
telomerase-positive and ALT cells occurs with the same frequency. EMBO Rep. 2003
Dec;4(12):1138-43. Epub 2003 Nov 14. PubMed PMID: 14618159; PubMed Central PMCID:
PMC1326419.


149: Mokbel K. The evolving role of telomerase inhibitors in the treatment of
cancer. Curr Med Res Opin. 2003;19(6):470-2. Review. PubMed PMID: 14594517.


150: Yamamoto A, Kumakura S, Uchida M, Barrett JC, Tsutsui T. Immortalization of
normal human embryonic fibroblasts by introduction of either the human
papillomavirus type 16 E6 or E7 gene alone. Int J Cancer. 2003 Sep
1;106(3):301-9. PubMed PMID: 12845665.


151: Shigeeda N, Uchida M, Barrett JC, Tsutsui T. Candidate chromosomal regions
for genes involved in activation of alternative lengthening of telomeres in human
immortal cell lines. Exp Gerontol. 2003 Jun;38(6):641-51. PubMed PMID: 12814799.


152: Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH. The different
biological effects of telomestatin and TMPyP4 can be attributed to their
selectivity for interaction with intramolecular or intermolecular G-quadruplex
structures. Cancer Res. 2003 Jun 15;63(12):3247-56. PubMed PMID: 12810655.


153: Reddel RR, Bryan TM. Alternative lengthening of telomeres: dangerous road
less travelled. Lancet. 2003 May 31;361(9372):1840-1. PubMed PMID: 12788566.


154: Desmaze C, Soria JC, Freulet-Marrière MA, Mathieu N, Sabatier L.
Telomere-driven genomic instability in cancer cells. Cancer Lett. 2003 May
15;194(2):173-82. Review. PubMed PMID: 12757975.


155: Reddel RR. Alternative lengthening of telomeres, telomerase, and cancer.
Cancer Lett. 2003 May 15;194(2):155-62. Review. PubMed PMID: 12757973.


156: Wu G, Jiang X, Lee WH, Chen PL. Assembly of functional ALT-associated
promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Cancer Res.
2003 May 15;63(10):2589-95. PubMed PMID: 12750284.


157: Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM, Gorlick R,
Meyers P, Healey JH, Huvos AG, Hoffman AR, Ladanyi M. Absence of a telomere
maintenance mechanism as a favorable prognostic factor in patients with
osteosarcoma. Cancer Res. 2003 Apr 15;63(8):1759-63. PubMed PMID: 12702558.


158: Hakin-Smith V, Jellinek DA, Levy D, Carroll T, Teo M, Timperley WR, McKay
MJ, Reddel RR, Royds JA. Alternative lengthening of telomeres and survival in
patients with glioblastoma multiforme. Lancet. 2003 Mar 8;361(9360):836-8. PubMed
PMID: 12642053.


159: Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, Silverstein
RL, Rafii S, Mesri EA. Kaposi's sarcoma associated herpesvirus G protein-coupled
receptor immortalizes human endothelial cells by activation of the VEGF
receptor-2/ KDR. Cancer Cell. 2003 Feb;3(2):131-43. PubMed PMID: 12620408.


160: Zhang X, Multani AS, Zhou JH, Shay JW, McConkey D, Dong L, Kim CS, Rosser
CJ, Pathak S, Benedict WF. Adenoviral-mediated retinoblastoma 94 produces rapid
telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder
cancer and immortalized human urothelial cells but not in normal urothelial
cells. Cancer Res. 2003 Feb 15;63(4):760-5. PubMed PMID: 12591722.


161: Kim MY, Duan W, Gleason-Guzman M, Hurley LH. Design, synthesis, and
biological evaluation of a series of fluoroquinoanthroxazines with contrasting
dual mechanisms of action against topoisomerase II and G-quadruplexes. J Med
Chem. 2003 Feb 13;46(4):571-83. PubMed PMID: 12570378.


162: Chang S, Khoo CM, Naylor ML, Maser RS, DePinho RA. Telomere-based crisis:
functional differences between telomerase activation and ALT in tumor
progression. Genes Dev. 2003 Jan 1;17(1):88-100. Erratum in: Genes Dev. 2003 Feb
15;17(4):541.. PubMed PMID: 12514102; PubMed Central PMCID: PMC195968.


163: Tsutsui T, Kumakura S, Yamamoto A, Kanai H, Tamura Y, Kato T, Anpo M, Tahara
H, Barrett JC. Association of p16(INK4a) and pRb inactivation with
immortalization of human cells. Carcinogenesis. 2002 Dec;23(12):2111-7. PubMed
PMID: 12507935.


164: Sood AK, Coffin J, Jabbari S, Buller RE, Hendrix MJ, Klingelhutz A. p53 null
mutations are associated with a telomerase negative phenotype in ovarian
carcinoma. Cancer Biol Ther. 2002 Sep-Oct;1(5):511-7. PubMed PMID: 12496479.


165: Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, Ungrin M,
Meyn MS. The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and
promotes telomeric DNA synthesis. Hum Mol Genet. 2002 Dec 1;11(25):3135-44.
PubMed PMID: 12444098.


166: Kumata M, Shimizu M, Oshimura M, Uchida M, Tsutsui T. Induction of cellular
senescence in a telomerase negative human immortal fibroblast cell line,
LCS-AF.1-3, by human chromosome 6. Int J Oncol. 2002 Oct;21(4):851-6. PubMed
PMID: 12239626.


167: Gan Y, Mo Y, Johnston J, Lu J, Wientjes MG, Au JL. Telomere maintenance in
telomerase-positive human ovarian SKOV-3 cells cannot be retarded by complete
inhibition of telomerase. FEBS Lett. 2002 Sep 11;527(1-3):10-4. PubMed PMID:
12220625.


168: Wadhwa R, Colgin L, Yaguchi T, Taira K, Reddel RR, Kaul SC. Rhodacyanine dye
MKT-077 inhibits in vitro telomerase assay but has no detectable effects on
telomerase activity in vivo. Cancer Res. 2002 Aug 1;62(15):4434-8. PubMed PMID:
12154051.


169: Scheel C, Poremba C. Telomere lengthening in telomerase-negative cells: the
ends are coming together. Virchows Arch. 2002 Jun;440(6):573-82. Epub 2002 Apr 9.
Review. PubMed PMID: 12070595.


170: Kim JH, Lee GE, Kim JC, Lee JH, Chung IK. A novel telomere elongation in an
adriamycin-resistant stomach cancer cell line with decreased telomerase activity.
Mol Cells. 2002 Apr 30;13(2):228-36. PubMed PMID: 12018844.


171: Yan P, Benhattar J, Coindre JM, Guillou L. Telomerase activity and hTERT
mRNA expression can be heterogeneous and does not correlate with telomere length
in soft tissue sarcomas. Int J Cancer. 2002 Apr 20;98(6):851-6. PubMed PMID:
11948462.


172: Varley H, Pickett HA, Foxon JL, Reddel RR, Royle NJ. Molecular
characterization of inter-telomere and intra-telomere mutations in human ALT
cells. Nat Genet. 2002 Mar;30(3):301-5. Epub 2002 Feb 4. PubMed PMID: 11919561.


173: Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of
telomeres in mammalian cells. Oncogene. 2002 Jan 21;21(4):598-610. Review. PubMed
PMID: 11850785.


174: Gowan SM, Heald R, Stevens MF, Kelland LR. Potent inhibition of telomerase
by small-molecule pentacyclic acridines capable of interacting with
G-quadruplexes. Mol Pharmacol. 2001 Nov;60(5):981-8. PubMed PMID: 11641426.


175: Grobelny JV, Kulp-McEliece M, Broccoli D. Effects of reconstitution of
telomerase activity on telomere maintenance by the alternative lengthening of
telomeres (ALT) pathway. Hum Mol Genet. 2001 Sep 1;10(18):1953-61. PubMed PMID:
11555632.


176: Cerone MA, Londono-Vallejo JA, Bacchetti S. Telomere maintenance by
telomerase and by recombination can coexist in human cells. Hum Mol Genet. 2001
Sep 1;10(18):1945-52. PubMed PMID: 11555631.


177: Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Sumiyoshi H, Srinivasula
SM, Barna BP, Germano IM, Takakura M, Inoue M, Alnemri ES, Shay JW, Kyo S, Kondo
S. Treatment of malignant glioma cells with the transfer of constitutively active
caspase-6 using the human telomerase catalytic subunit (human telomerase reverse
transcriptase) gene promoter. Cancer Res. 2001 Aug 1;61(15):5796-802. PubMed
PMID: 11479218.


178: Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen
F, Boecker W, Dockhorn-Dworniczak B, Poremba C. Alternative lengthening of
telomeres is associated with chromosomal instability in osteosarcomas. Oncogene.
2001 Jun 28;20(29):3835-44. PubMed PMID: 11439347.


179: Ford LP, Zou Y, Pongracz K, Gryaznov SM, Shay JW, Wright WE. Telomerase can
inhibit the recombination-based pathway of telomere maintenance in human cells. J
Biol Chem. 2001 Aug 24;276(34):32198-203. Epub 2001 Jun 6. PubMed PMID: 11395519.


180: Perrem K, Colgin LM, Neumann AA, Yeager TR, Reddel RR. Coexistence of
alternative lengthening of telomeres and telomerase in hTERT-transfected GM847
cells. Mol Cell Biol. 2001 Jun;21(12):3862-75. PubMed PMID: 11359895; PubMed
Central PMCID: PMC87050.


181: Aragona M, Pontoriero A, Panetta S, La Torre I, La Torre F. [The role of
telomere-binding proteins in carcinogenesis]. Minerva Med. 2000
Nov-Dec;91(11-12):299-304. Review. Italian. PubMed PMID: 11253711.


182: Hoare SF, Bryce LA, Wisman GB, Burns S, Going JJ, van der Zee AG, Keith WN.
Lack of telomerase RNA gene hTERC expression in alternative lengthening of
telomeres cells is associated with methylation of the hTERC promoter. Cancer Res.
2001 Jan 1;61(1):27-32. PubMed PMID: 11196173.


183: Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR. Alternative
lengthening of telomeres in human cells. Radiat Res. 2001 Jan;155(1 Pt
2):194-200. Review. PubMed PMID: 11121234.


184: Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by
recombination in human cells. Nat Genet. 2000 Dec;26(4):447-50. PubMed PMID:
11101843.


185: Grobelny JV, Godwin AK, Broccoli D. ALT-associated PML bodies are present in
viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J
Cell Sci. 2000 Dec;113 Pt 24:4577-85. PubMed PMID: 11082050.


186: Aragona M, Maisano R, Panetta S, Giudice A, Morelli M, La Torre I, La Torre
F. Telomere length maintenance in aging and carcinogenesis. Int J Oncol. 2000
Nov;17(5):981-9. Review. PubMed PMID: 11029502.


187: Wu G, Lee WH, Chen PL. NBS1 and TRF1 colocalize at promyelocytic leukemia
bodies during late S/G2 phases in immortalized telomerase-negative cells.
Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem. 2000
Sep 29;275(39):30618-22. PubMed PMID: 10913111.


188: Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR.
Telomerase-negative immortalized human cells contain a novel type of
promyelocytic leukemia (PML) body. Cancer Res. 1999 Sep 1;59(17):4175-9. PubMed
PMID: 10485449.


189: Montalto MC, Phillips JS, Ray FA. Telomerase activation in human fibroblasts
during escape from crisis. J Cell Physiol. 1999 Jul;180(1):46-52. PubMed PMID:
10362016.


190: Perrem K, Bryan TM, Englezou A, Hackl T, Moy EL, Reddel RR. Repression of an
alternative mechanism for lengthening of telomeres in somatic cell hybrids.
Oncogene. 1999 Jun 3;18(22):3383-90. PubMed PMID: 10362359.


191: Müller M, Heicappell R, Krause H, Sachsinger J, Porsche C, Miller K.
Telomerase activity in malignant and benign renal tumors. Eur Urol.
1999;35(3):249-55. PubMed PMID: 10072629.


192: Reddel RR, Bryan TM, Murnane JP. Immortalized cells with no detectable
telomerase activity. A review. Biochemistry (Mosc). 1997 Nov;62(11):1254-62.
Review. PubMed PMID: 9467849.


193: Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an
alternative mechanism for maintaining telomere length in human tumors and
tumor-derived cell lines. Nat Med. 1997 Nov;3(11):1271-4. PubMed PMID: 9359704.


194: Bryan TM, Marusic L, Bacchetti S, Namba M, Reddel RR. The telomere
lengthening mechanism in telomerase-negative immortal human cells does not
involve the telomerase RNA subunit. Hum Mol Genet. 1997 Jun;6(6):921-6. PubMed
PMID: 9175740.


195: Bryan TM, Reddel RR. Telomere dynamics and telomerase activity in in vitro
immortalised human cells. Eur J Cancer. 1997 Apr;33(5):767-73. Review. PubMed
PMID: 9282115.

Controversial reports on spontaneous transformation of MSCs

・Points to Consider in the Characterization of Cell Lines Used to Produce Biologicals 7/12/1993
http://www.fda.gov/cber/gdlns/ptccell.pdf


Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter.
Torsvik A, R?sland GV, Svendsen A, Molven A, Immervoll H, McCormack E, L?nning PE, Primon M, Sobala E, Tonn JC, Goldbrunner R, Schichor C, Mysliwietz J, Lah TT, Motaln H, Knappskog S, Bjerkvig R.
Cancer Res. 2010 Aug 1;70(15):6393-6.

Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo.
Rubio R, Garc?a-Castro J, Guti?rrez-Aranda I, Paramio J, Santos M, Catalina P, Leone PE, Menendez P, Rodr?guez R.
Cancer Res. 2010 May 15;70(10):4185-94.



Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation.
R?sland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, L?nning PE, Bjerkvig R, Schichor C.
Cancer Res. 2009 Jul 1;69(13):5331-9.

Cancer Res. 2005 Apr 15;65(8):3035-9.
Spontaneous human adult stem cell transformation.
Rubio D, Garcia-Castro J, Mart?n MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A.

Department of Immunology and Oncology, Centro Nacional de Biotecnolog?a/Consejo Superior de Investigaciones Cientificas, UAM Campus de Cantoblanco, Darwin, 3 E-28049 Madrid, Spain.
Erratum in:

Cancer Res. 2005 Jun 1;65(11):4969.
Comment in:
Cancer Res. 2005 Oct 15;65(20):9601; author reply 9601.
Abstract
Human adult stem cells are being evaluated widely for various therapeutic approaches. Several recent clinical trials have reported their safety, showing them to be highly resistant to transformation. The clear similarities between stem cell and cancer stem cell genetic programs are nonetheless the basis of a recent proposal that some cancer stem cells could derive from human adult stem cells. Here we show that although they can be managed safely during the standard ex vivo expansion period (6-8 weeks), human mesenchymal stem cells can undergo spontaneous transformation following long-term in vitro culture (4-5 months). This is the first report of spontaneous transformation of human adult stem cells, supporting the hypothesis of cancer stem cell origin. Our findings indicate the importance of biosafety studies of mesenchymal stem cell biology to efficiently exploit their full clinical therapeutic potential.


Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms.
Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F.
Cancer Res. 2007 Oct 1;67(19):9142-9.


Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms.
Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F.
Cancer Res. 2007 Oct 1;67(19):9142-9.
PMID: 17909019

Saturday, March 6, 2010

Greetings Presentation example

Good morning, ladies and gentlemen.


Thank you for taking time out of your schedules to attend this session. My name is xxx and I am xxx of the NCCHD. NCCHD is a government-related organization that works to promote medicine, especially in the field of pediatrics and obstetrics in Japan and other countries. Our activities include facilitating foreign direct investment into Japan, helping the international xxx of Japan’s small and medium-sized firms, enhancing Japan’s xxx with developing countries and, organizing seminars to encourage international business in high-tech areas. I am delighted that NCCHD has the opportunity to introduce Japan’s cell-based therapy.

We have selected glycoscience as the topic for today’s session. There are several reasons.

Firstly, glycoscience is a cutting-edge life sciences field that has enormous potential for various applications. As you know, glycan microarrays and glycan biomarker provide unique and powerful tools for the development of cancer diagnosis and therapy, as well as regenerative medicine and stem cell-based therapy. There are high expectations for the development of new drugs and practical applications for innovative medicines using these tools.

Secondly, we chose glycoscience because Japan is a pioneer in this key field. The country accounted for xx% of the world’s glycoscience-related patent applications between 20xx and 20xx; this is behind only the Uxx, which accounted for xx% of all applications. Japanese firms have been contributing to the development of innovative medicine using glycoscience. For example, this March, xxx received a exclusive license from xxx, for a therapeutic antibody developed using xxx’s unique glycoscience technology,“xxx”.

Last but not least, glycoscience is an area where we would like to foster and support international tie-ups and collaboration. At this year’s xxx, xx Japanese companies and organizations are exhibiting at the Japan xxx. They present technology and products in the area of glycoscience, including cell engineering, regenerative medicines, microarray and nano-biotech. International collaboration is crucial for high-tech researches, and I hope today’s session will lead you to new opportunities, such as joint research and technology alliances with Japanese exhibitors. We look forward to welcoming all of you to the Japan xxx3.

To conclude, I hope that today’s session will be highly informative on the latest trends in the development and application of glycoscience, and in some way be helpful for your business with Japan in the future.

Thank you.